
UNCTAqTTFT)

I Form Approved

AD-A206 962 .EMB No. 0704-0188
,_ 9 6 2 .T E lb. RESTRICTIVE MARKINGS 1 .

4d. 3MUtuI T LLAbWILAIION AUTHORITY MAR 0 3 198q 3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION/DOWNGRA " EDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S1I Y S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFATL-TR- 89-01

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Westinghouse Electric (if applicable) Guidance & Control Branch
Corporation I Aeromechanics Division

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)
Westinghouse Electric Corporation Air Force Armament Laboratory
Development Operations Division Eglin AFB FL 32542-5434
PO Box 1693, Baltimore MD 21203

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9, PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AD/AFATL FXG F08635-87-C-0107

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
AFATL /FXG PROGRAM PROJECT ITASK I WORK UNIT
EGLIN AFB FL 32542-5434 ELEMENT NO. NO. NO IACCESSION NO.

. 62602F 2567 01 53
11. TI LE (Include Security Classification)

1/Zuidance Instruction Set Architecture: Missile Computing Power for the 90's (u)

12. PERSONAL AUTHOR(S)
Harto, Debra L. York, Lt George W. P.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Tech Paper FROM .Sep 87 TO Jan 89 February 1989 8

16. SUPPLEMENTARY NOTATION

N/A
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Missile Computer, Instruction ,$et ,4chitecture;
09 02 Computer)tardware, (-4--

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

- With the ever increasing processing demands placed on weapon systems, current general pur-
pose processors cannot meet the throughput requirements. Also, processors optimized for
executing applications implemented in the DOD mandated language, Ada, are necessary. How-
ever, a balance between customized hardware and off-the-shelf convenience must be sought.
Such a balance is being pursued in the Guidance Set Architecture (GISA) program sponsored
by the Air Force Armament Laboratory. In the GISA program, an instruction set architecture
optimized for processing tactical missile guidance and control algorithms written in Ada
is being developed using off-the-shelf products to the maximum extent possible. This paper
provides a description of the program's goals, objective, and accomplishments as well as
possible plans for future efforts in this area. , . ",

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

EUNCLASSIFIED/UNLIMITED 03 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL

n)FRA L_ HARTO I(904) 882-2961% 1 AFATL]]G

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

GUIDANCE INSTRUCTION SET ARCHITECTURE: MISSILE COMPUTING POWER FOR THE 90s

Lt George York and Debra Harto

ABSTRACT

Tactical missile guidance and control algorithms have always been
computationally intensive. Jith the ever increasing processing demands
placed on weapon systems, current general purpose processors cannot meet
the throughput requirements. Also, processors optimized for executing
applications implemented in the DOD mandated language, Ada, are necessary.
However, a balance between customized hardware and off-the-shelf
convenience must be sought. Such a balance is being pursued in the
Guidance Set Architecture (GISA) program sponsored by the Air Force
Armament Laboratory. In the GISA program, an instruction set architecture
optimized for processing tactical missile guidance and control algorithms
written in Ada is being developed using off-the-shelf products to the
maximum extent possible. This paper provides a description of the
program's goals, objectives, and accomplishments as well as possible plans
for future efforts in this area.

BACKGROUND

Currently, general purpose microprocessors, similar to those used in
personal computers, workstations, and even home appliances, are also used
in weapon systems. However, as tactical missile guidance and control
algorithms become more complex, neither general purpose nor MIL-STD-1750A
microprocessors will meet the processing requirements. Future guided
weapons will require greatly improved computational capability to execute
modern guidance algorithms, utilize artificial intelligence, and support
intensive seeker signal processing.

Current guidance and control microprocessors are not capable of supporting
these requirements because general purpose computers sacrifice performance
for flexibility. In order to meet high performance requirements, general
purpose machines have given way to special purpose instruction set
architectures (ISAs) for certain applications such as radar signal
processing. An ISA comprises the central processing unit (CPU)
instructions and internal characteristics as seen by an assembly language
programmer. The ISA is one level lower than that which a high order
language (HOL) programmer must consider. However, in real-time
applications, the HOL programmer must be concerned with the efficiency of
the execution of the HOL code which is directly dependent on the efficiency
of the ISA. To date, this special purpose ISA concept has not been applied
to missile guidance and control microprocessors.

To meet this challenge, in July 1986 the Air Force Armament Laboratory
(AFATL) initiated the Guidance Instruction Set Architecture-Phase 1 (GISA-
1) program, a basic research effort recently completed by LTV. The
objective of GISA-1 was to determine the feasibility of developing a 32-bit
ISA optimized for missile guidance and control. The results of the program
were that the concept was feasible and that an optimized ISA would be more
efficient than commercial general purpose microprocessors at executing
guidance and control applications. However, certain questions were still
unanswered: Can an off-the-shelf ISA meet the throughput requirements? Is
a hybrid of customized and off-the-shelf hardware feasible?89 025

GISA-2 PROGRAM APPROACH

In September 1987, the Air Force Armament Laboratory initiated the Guidance
Instruction Set Architecture-Phase 2 (GISA-2) program. GISA-2 is aimed at
developing a 32-bit ISA optimized for processing tactical missile guidance
and control algorithms written in Ada. Both customized and off-the-shelf
hardware options are being explored. The GISA-2 contract was awarded to
Westinghouse Electric Company (WEC).

The GISA program is divided into the following six tasks: (1) software
domain analysis, (2) instruction set architecture survey, (3) hardware
design decisions, (4) hardware design and implementation, (5) Ada tool set
development, and (6) evaluation. These tasks are described in the
following paragraphs.

Software Domain Analysis

A domain analysis was conducted from September 1987 to April 1988 to
determine the processing requirements of guidance algorithms. Missile and
radar operational flight software were analyzed to determine the assembly-
level instructions used most often in guidance and control algorithms. The
software analyzed in the domain analysis included guidance software from
the Advanced Medium Range Air-to-Air Missile (AMRAAM), a WEC in-house
classified missile, the F-16 front end radar system (APG-68), and an
aircraft radar called HELRATS, the High Energy Laser Ranging And Targeting
System. Also, the Common Ada Missile Packages (CAMP) guidance and navigation
benchmarks were analyzed. The CAMP program developed 454 efficient,
reusable Ada missile parts and armonics benchmarks representative of
operational missile software. The CAMP benchmarks were analyzed to determined
static and dynamic instruction frequency, procedure call depth, and
number of parameters passed in subroutine calls.

It was concluded that the instruction frequency of radar and missile
software was similar (see figure). Data movement instructions were

Average InstrutIon Frequences

7Average Instruction Frequencies70

p - r For -

e -- -

e
ft

0 40-

U
g • Rador

e 20- Gewwai

10OdW-WV CuOW DImk Lmus SO *m 1/0 a c

koki OIm

the most frequently used operations and accounted for over 60 percent of
the missile assembly-ievel instructions and 45 percent of the radar code.
The second most frequently used instructions were control operations
(branch, loop, subroutine call, etc) which accounted for 15 to 20 percent
of the code. Math operations accounted for approximately 15 percent of the
code. Another conclusion was that predominantly floating point arithmetic
rather than fixed point arithmetic was performed. It was also determined
that an average of three parameters were passed in subroutine calls, and the
average call depth was two subroutines. Since both the average number of
parameters passed in subroutine calls and the average call depth were small,
it was decided that multiple register sets are unnecessary.

Instruction Set Architecture Survey

After the guidance and control requirements were defined, a survey was
conducted to determine if an off-the-shelf processor could meet these
requirements. Specific areas of interest were (1) support for Ada tasking,
(2) amount of overhead involved in context switching and subroutine
calls, and (3) amount of built-in support for miiltiproc~ssin9 and mermcry
management schemes. The ISA survey was conducted by executing the
SIGAda Performance Issues Working Group (PIWG) benchmarks on three off-
the-shelf microprocessors. The benchmarks used included Whetstone, Task
Creation, Exception Handling, Dynamic Array Elaborations, Setting a
Boolean Flag, Procedure Calls, Task Entry Calls, and Loop Timing. The
three candidate microprocessors were a MIL-STD-1750A, a Motorola 68020,
and a MIPS Computer Systems R2000. The MIL-STD-1750A processor used was the
Fairchild 9450 chip which was driven by a 25 MHz clock and used an
unoptimized ACT Ada compiler. Another candidate was the Motorola 68020
which operated at 16 MHz and used a Verdix Ada compiler (Optimized with
Suppression). The third processor was a MIPS Computer Systems R2000
which ran at 16 MHz and used an unoptimized Verdix Ada compiler.

The following figures show the relative performance of the three processors
for these benchmarks. The performance of the MIPS processor far exceeded

25000

PIWG Benchmarks

20000 (Performance Issues Working Group)2OOOOA

68020

15000

I
0
0

10000--

5000- _ _ _ _ _ _ _ _

Whetstone Task Creation Exception Task Entry Calls soswk i o9een FUg Dy-aat A- ProCedU Loop Ti*
1000 Instructions (Tasksisec) Handling (Callslsec) (Fl"Wsbc) E10bsrMNMf Cals (Loopwsi

per sec (Exceptions/sec) (loo b AnW$ (calSftec)
per me)

the other processors in all benchmarks except exception handling. It was
concluded that reduced instruction set computer (RISC) architectures,
like the MIPS, offer the potential for the highest throughput, and no
off-the-shelf processor can meet all the guidance and control
requirements without some modification.

Hardware Design Decisions

Based on the ISA survey and the domain analysis results, it was decided
that the baseline for the GISA-2 hardware will be the DARPA Core MIPS
ISA. MIPS is an acronym for Microprocessor without Interlocked Pipeline
Stages. In complex instruction set computer (CISC) architectures, the
number of clock cycles per instruction varies. Therefore, interlocked
pipeline stages are used to provide control and timing in order to
execute instructions efficiently. However, implementing the interlocked
pipeline stages is complicated and the extra hardware logic necessary
takes up "real estate" on the chip. Since the MIPS architecture does
not use interlocked pipeline stages, it is simpler than a CISC
architecture and takes up less room on a chip. In order for the MIPS
architecture to process instructions efficiently, each instruction should
execute in one clock cyle. For those few that do not, such as those
that require memory access, the compiler inserts NO-OP (no operation)
instructions to insure proper timing.

The DARPA Core MIPS ISA is a government-owned specification for a
reduced instruction set computer (RISC) architecture. The document,
Core Set of Assembly Language Instructions for MIPS-based
Microprocessors, defines the instruction set for MIPS-based
microprocessors. The intent was that compiler writers could target
their compilers to the MIPS core ISA, and hardware designers could
target their hardware to execute the assembled code. The document was
written with the purpose of allowing one Ada compiler to work with
several MIPS machines without requiring the compiler to be rewritten for
each MIPS implementation. The MIPS core ISA document was written to be
specific enough to define a complete ISA, yet flexible enough not to
confine the hardware designers. However, due to this flexibility, the
document is too vague in some areas and some other areas are not
addressed at all. For example, the document does not address the issues
of multiprocessing, fault tolerance, and operating system support.
Also, the register/data formats, interrupt structure, input/output,
memory management, and real-time clocks are not well defined. This has
led to different interpretations of the MIPS core ISA.

Several processors based on the DARPA Core MIPS ISA have been developed.
For example, MIPS Computer Systems has produced a series of processors,
the R2000 and R3000, based on their interpretation of the MIPS core ISA
document. The GISA breadboard will use the MIPS Computer Systems chip set to
execute the GISA ISA. In a later phase, the GISA processor may be
constructed on a chip using VHSIC technology.

The GISA-2 ISA will be designed using the DARPA Core MIPS ISA as a
baseline, but the designers will add instructions and interpret the ISA
as necessary to optimize for guidance and control applications. The
following enhancements to the MIPS core ISA are proposed for the GISA-2
architecture:

a. instructions to support extended precision math such as add and
subtract with carry which can provide a 50% improvement in the time
required to perform double precision arithmetic.

b. instructions for bit operations, such as "test and set bit in
memory", which aid in semaphore signaling operations and device
control.

c. logical instructions, such as AND and OR, will be used to perform
operations such as "clear and set bit."

d. bit field instructions such as "find first bit set/cleared" and
"extract/insert bit field" in order to support Ada runtime memory
allocation and device control.

e. interfaces to co-processors in order to provide a standard means of

accessing unique hardware operations provided by co-processors.

f. user-defined instructions.

The GISA-2 architecture will not contain instructions to support link list
manipulations. Analysis of the guidance and control software showed that
link list operations were rarely executed. Many processors provide
support for linked lists, but these operations are seldom executed by the
runtime executive or the embedded application code. Therefore, since
little if any performance improvement can be gained in a RISC processor by
implementing link list instructions, the GISA-2 computer will not contain
any unique instructions to support this feature.

Exponential and transcendental functions are traditionally found in
guidance and radar processing algorithms, but these functions will not be
implemented in the GISA hardware. Instead, they will be provided as
callable software routines that will reside in the runtime library.

Hardware Design and Implementation

The GISA-2 hardware products are a breadboard CPU which executes the
GISA code and an accompanying brassboard computer. The following figures
show the breadboard CPU and its interfaces, and a diagram of the GISA
brassboard computer. The brassboard supports an IEEE 488 interface, a RS-232
serial interface, a VME/VSB bus, and a dual 1553B bus. The breadboard
contains 1 megabyte of RAM, 64k bytes of instruction cache, 64k byte of
data cache, and 256k bytes of UVPROM (Ultra-Violet Programmable Read-
Only Memory). The UVPROM is used for boot and diagnostic software, as
well as the runtime executive. In order to process floating point data
quickly, the breadboard CPU will be supported by a floating point
coprocessor (double and single precision). The breadboard supports two
32-bit programmable, resetable interval timers, one real-time clock, 32
general purpose interrupts, 32 1-bit discrete ports, 32 32-bit general
purpose registers, two multiply/divide registers, one program counter,
and 16 64-bit floating point registers.

z aL
0

LL
z
0

0O
CD

0

C')D
a: I

z
0

w

I-i

The hardware will be delivered in a rack as shown Delow. The rack has
expansion slots to hold additional GISA processor breadboards.
Westinghouse has developed an operating system, Kernal Operating System
(KOS), tnat will be modified to support multiprocessing with numerous
GISA brassboards. For testing the GISA computer, benchmark programs
will be downloaded from a MicroVAX to the GISA brassboard via a 488 bus.
Residing on the MicroVAX is a 1553B tester that can examine the 1553B
interface directly. The GISA breadboard may communicate with a device
such as an oscilloscope via its discrete ports and with other processors
across the VME bus.

System CoalfgtamUon Test Configumtion

VME

OSC4LLOSCOPE

GISA 1 553B

SA Por,~ P S BREADBOARD INTERFACI

MICROVA 488 J

1653BDUAL 153B BUS

TESTER

Ada Tool Set Development

Since it is essential to be able to develop applications in Ada on the
GISA-2 processor, AFATL is developing an Ada tool set under the GISA-2
effort. InterAct under subcontract to Westinghouse is developing the GISA
Ada tool set. The Ada tool set includes an Ada compiler, assembler,
symbolic debugger, linker/loader, and runtime executive. The compiler
will be hosted on a MicroVax and executable code will be downloaded from
the MicroVax to the GISA hardware. InterAct is retargeting an existing
Ada compiler to the GISA hardware and is also responsible for the
assembler and linker/loader. The symbolic debugger will be a modified
version of the VAMP (VHSIC Avionics Modular Processor) debugger. The
runtime executive will be a modified version of the Westinghouse KOS.
InterACT is tailoring the Ada compiler to interface with the KOS runtime
executive which will allow efficient execution of Ada application code.

The quality of the Ada compiler has a significant impact on the target
processor's performance. Since InterACT is retargeting a mature Ada
compiler to the GISA hardware, it should be more efficient than one
developed from scratch. Since the government is not in the business of

maintaining software tools, the Air Force will only own a license to use
the compiler. InterACT is wholly responsible for maintaining and marketing
the compiler.

Evaluation

The final task of the GISA-2 program is to evaluate the performance of the
GISA hardware versus a Motorola 68020, a MIL-STD-1750A, and at least one
other 32-bit processor. The third processor is yet to be specified. The
AFATL-developed CAMP benchmarks will be executed on each of the computers
to collect performance data. The data will be studied to determine how the
performance of the GISA-2 hardware compares to that of the off-the-shelf
processors.

PRODUCTS

The GISA-2 deliverables include the GISA breadboard and brassboard along
with a specification for manufacturing the GISA-2 hardware into a VHSIC
chip. This chip may be constructed in a follow-on project if the
performance results of GISA-2 are positive. The government will receive
a license to use the GISA Ada tool set. The government will own the
GISA debugger, but will be licensed to use the Ada compiler. A final
report documenting the development and evaluation of the GISA-2 hardware
will be delivered. The hardware will be integrated during May-Sept 89
and the evaluation will be conducted during Sept-Dec 89.

FUTURE DIRECTIONS

If the GISA-2 processor performs as well as expected, a GISA-3 project
may be undertaken. In GISA-3, a VHSIC chip will be manufactured
following the specification delivered as part of the GISA-2 project, and
the brassboard computer will be form-factored for a weapon system.
Real-time simulations will be performed with the GISA-3 computer as a
processor-in-the-loop. Advanced guidance laws which are computationally
intensive will be analyzed on this system. Also, experiments in
multiprocessing will be performed.

CONCLUSION

The GISA program will result in an instruction set architecture optimized
for guidance and control algorithms written in Ada. To demonstrate and
evaluate the ISA, a GISA processor and Ada software tools will be
developed. The performance comparison of the GISA processor (a custom/off-
the-shelf hybrid) versus general purpose processors will show if
significant gains can be made in processing guidance and control algorithms
due to an optimized ISA. If the GISA processor performs as expected, it
will allow researchers to more efficiently process modern guidance
and control algorithms in the real-time environment in support of future
tactical weapons.

